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Abstract In this work we investigate the convergence of stochastic search algorithms
toward the Pareto set of continuous multi-objective optimization problems. The focus is on
obtaining a finite approximation that should capture the entire solution set in a suitable sense,
which will be defined using the concept of ε-dominance. Under mild assumptions about the
process to generate new candidate solutions, the limit approximation set will be determined
entirely by the archiving strategy. We propose and analyse two different archiving strategies
which lead to a different limit behavior of the algorithms, yielding bounds on the obtained
approximation quality as well as on the cardinality of the resulting Pareto set approximation.
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1 Introduction

A common goal in multi-objective optimization is to identify the set of Pareto-optimal solu-
tions (the efficient set) and its image in objective space, the Pareto front (the efficient frontier).
Except for special cases, where the Pareto set is finite or, e.g., representable by a finite collec-
tion of faces of a polyhedron (such as in multi-objective linear programming), it is in general
not practicable to determine the entire Pareto set. Therefore, a suitable approximation concept
is needed.

Various approximation concepts based on ε-efficiency are surveyed in [4]. As most of
them deal with infinite sets, they are not practical for our purpose of producing and maintain-
ing a representative subset of finite size. The use of discrete ε-approximations of the Pareto
set was suggested simultaneously by Evtushenko and Potapov [1], Reuter [10], and Ruhe and
Fruhwirt [13]. The general idea is that each Pareto-optimal point is approximately dominated
by some point of the approximation set.

Despite the existence of suitable approximation concepts, investigations on the conver-
gence of particular algorithms toward such approximation sets, that is, their ability to obtain
a suitable Pareto set approximation in the limit, have remained rare. Several studies, such as
[3,12], consider only the convergence to the entire Pareto set, or to a certain subset without
considering the approximation quality.

Finally, the issue of stochastic convergence toward finite-size Pareto set approximations
was raised in the area of evolutionary multi-objective optimization, mostly under the assump-
tion of finite search space. One option is to use Markov chain results assuming the underlying
search processes to be Markovian [11]. Another option is to define an order homomorphism
of the natural dominance relation of approximation sets into a totally ordered set of quality
values, thus enforcing a monotonicity of the sequence of solution sets maintained by an
algorithm. As shown in [5,6], this entails convergence to a subset of the Pareto set as a local
optimum of the quality indicator, but no approximation guarantee could given. Knowles and
Corne [6] also analyzed the adaptive grid archiving proposed in [7] and proved that after
finite time, even though the solution set itself might permanently oscillate, it will always
represent an ε-approximation whose approximation quality depends on the granularity of the
adaptive grid and on the number of allowed solutions. The results depend on the additional
assumption that the grid boundaries converge after finite time, which is fulfilled in certain
special cases.

In [8], two archiving algorithms were proposed that provably maintain a finite-size approx-
imation of all points ever generated during the search process. As an immediate corollary,
these archiving strategies were claimed to ensure convergence to a Pareto set approximation
of given quality for any iterative search algorithm that fulfills certain mild assumptions about
the process to generate new search points. While this claim holds trivially in the case of
discrete (or discretized) search spaces, its extension to the continuous case is not straightfor-
ward. A restriction to discretized models, however, can lead to problems when, e.g., memetic
strategies are used (metaheuristic search algorithms mixed with local search strategies which
itself use step size control).

The goal of this article is to establish archiving strategies to obtain finite Pareto set
approximations for stochastic multi-objective optimization algorithms working in continuous
domains. We start by considering the first archiving strategy, which is a variant of the strat-
egy from [8], and prove convergence with probability one to an ε-approximate Pareto set
in the limit. Then we propose a new archiving strategy that additionally ensures that all
elements of the limit set are Pareto-optimal points themselves. For both strategies, we give
bounds on the approximation quality and on the cardinality of the limit solution set. Finally,
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computational results are given on two test problems to demonstrate the effects and benefits
of both archiving strategies.

2 Background

In the following, we consider continuous unconstrained multi-objective optimization prob-
lems

min
x∈Rn

{F(x)}, (MOP)

where the function F is defined as the vector of the objective functions

F: R
n → R

k, F(x) = ( f1(x), . . . , fk(x)),

and where each fi: R
n → R is continuous.

Definition 2.1 (a) Let v,w ∈ R
k . Then the vector v is less than w (v <p w), if vi < wi

for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.
(b) A point y ∈ R

n is dominated by a point x ∈ R
n (in short: x ≺ y) with respect to

(MOP) if F(x) ≤p F(y) and F(x) �= F(y) (i.e., there exists a j ∈ {1, . . . , k} such that
f j (x) < f j (y)), else y is called nondominated by x .

(c) A point x ∈ R
n is called Pareto optimal or a Pareto point if there is no y ∈ R

n which
dominates x .

(d) A point x ∈ R
n is called weakly Pareto optimal if there does not exist another point

y ∈ R
n such that F(y) <p F(x).

We now define a weaker concept of dominance, called (absolute) ε-dominance, which is
used as the approximation concept in the remainder of this study.

Definition 2.2 Let ε = (ε1, . . . , εk) ∈ R
k+ and x, y ∈ R

n .x is said to ε-dominate y (in short:
x ≺ε y) with respect to (MOP) if F(x) − ε ≤p F(y) and F(x) − ε �= F(y).

Note that the ε-dominance relation—unlike the ordinary dominance defined above—is
not transitive, i.e., if x ≺ε y and y ≺ε z it does not follow that x ≺ε z, but it follows that
x ≺2ε z. This fact will be used in later considerations as well as the following: if x ≺ y and
y ≺ε z it follows that x ≺ε z.

Definition 2.3 [8] Let ε ∈ R
k+.

(a) A set Fε ⊂ R
n is called an ε-approximate Pareto set of (MOP) if every point x ∈ R

n is
ε-dominated by at least one f ∈ Fε , i.e.,

∀x ∈ R
n: ∃ f ∈ Fε : f ≺ε x

(b) A set F∗
ε ⊂ R

n is called an ε-Pareto set if F∗
ε is an ε-approximate Pareto set and if every

point f ∈ F∗
ε is a Pareto point of (MOP).

Let Bδ(x0) := {x ∈ R
n: ‖x − x0‖ < δ} be the open ball with center x0 ∈ R

n and radius
δ ∈ R+. A k-dimensional box B can be represented by a center c ∈ R

k and a radius r ∈ R
k+:

B = B(c, r) = {x ∈ R
k: |xi − ci | ≤ ri ∀i = 1, . . . , k}.

Next, we need the following distances between different sets.
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Definition 2.4 Let u ∈ R
n and A, B ⊂ R

n . The semi-distance dist(·, ·) and the Hausdorff
distance dH (·, ·) are defined as follows:

(a) dist(u, A) := inf
v∈A

‖u − v‖
(b) dist(B, A) := sup

u∈B
dist(u, A)

(c) dH (A, B) := max {dist(A, B), dist(B, A)}
Algorithm 1 gives a framework of a generic stochastic multi-objective optimization algo-

rithm, which is considered in this work. Here, Q ⊂ R
n denotes the domain of the MOP, Pj

the candidate set (or population) of the generation process at iteration step j , and A j the
corresponding archive. Theorem 2.5 states a convergence result which is closely related to
the present work, but which leads in general to unbounded archive sizes.

Algorithm 1 Generic Stochastic Search Algorithm
1: P0 ⊂ Q drawn at random
2: A0 = ArchiveU pdate(P0, ∅)

3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj )
5: A j+1 = ArchiveU pdate(Pj+1, A j )
6: end for

Theorem 2.5 [14] Let an MOP F: R
n → R

k be given, where F is continuous, let Q ⊂ R
n

be compact. Further, let there be no weak Pareto point in Q\PQ (where PQ denotes the set
of Pareto points of F

∣
∣
Q), and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1 (1)

Then an application of Algorithm 1, where all nondominated points are kept, i.e.,
ArchiveU pdate(P, A) := {x ∈ P ∪ A: y �≺ x ∀y ∈ P ∪ A}, generates a sequence of
archives {Ai }i∈N, such that

lim
i→∞ dH (F(PQ), F(Ai )) = 0 with probability one.

3 The algorithms

In the following we investigate two different strategies for the archiving of the solutions found
by the algorithm leading to different limit behaviors of the sequence of archives (under certain
additional conditions).

First, we assume that the entries of ε ∈ R
k+ are ‘small’, and thus that it is sufficient to

obtain an ε-approximate Pareto set. For this, we consider an archiving strategy very similar
to the one proposed in [8], here given as Algorithm 2. It computes the subsequent archive A
of a given archive A0, a population P , an ε ∈ R

k+, and a � ∈ (0, 1). Using this strategy, the
sequence of archives has a limit behavior described in Theorem 3.2. To show this, we first
need the following obvious but crucial property of the archiving strategy.
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Algorithm 2 A := ArchiveU pdateEps1 (P, A0)

A := A0
for all p ∈ P do

if ∃a ∈ A : a ≺�ε p then
CONTINUE � do not execute lines 6 – 11

end if
for all a ∈ A do

if p ≺ a then
A := A\{a}

end if
end for
A := A ∪ {p}

end for

Lemma 3.1 Let A0, P ⊂ R
n be finite sets, ε ∈ R

k+, and
A := ArchiveUpdateEps1 (P, A0). Then the following holds:

∀x ∈ P ∪ A0: ∃a ∈ A: a ≺�ε x .

Proof Roughly speaking, the statement follows since points a are only discarded from the
archive if in turn another point p with p ≺ a is inserted (this ’replacement’ is given in lines
7, 8 and 11 in Algorithm 2). To be more precise, let P = {p1, p2, . . . , pl}, l ∈ N. Without
loss of generality we assume that all points pi are considered in this ordering (i.e., in the
for-loop in line 2 of Algorithm 2). There are two cases we have to distinguish.
Case A x ∈ A0. Define p′

0 := x and

p′
i :=

{
pi if pi ‘replaces’p′

i−1
p′

i−1 else
, i = 1, . . . , l.

It holds that p′
l ∈ A and either p′

l = x or p′
l ≺ x (due to the transitivity of ≺). In both cases

it is p′
l ≺�ε x .

Case B x ∈ P . Let x = p j , j ∈ {1, . . . , l}. After the j-th iteration of the outer for-loop
in Algorithm 2 there exists an element a j ∈ A with a j ≺�ε p j (line 3 resp. line 11 of
Algorithm 2). Define p′

j := a j and p′
i , i = j + 1, . . . , l, as above. It follows that p′

l ∈ A
and p′

l ≺�ε x as claimed. ��
Theorem 3.2 Let an MOP F : R

n → R
k be given, where F is continuous, let Q ⊂ R

n be a
compact set and ε ∈ R

k+. Further let

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N: Pl ∩ Bδ(x) ∩ Q �= ∅) = 1 (2)

Then an application of Algorithm 1, where ArchiveU pdateEps1 is used to update the
archive, leads to a sequence of archives Al , l ∈ N, such that there exists with probability one
an l0 ∈ N such that Al is an ε-approximate Pareto set for all l ≥ l0.

Proof Let mi = minx∈Q fi (x) and Mi = maxx∈Q fi (x), 1 ≤ i ≤ k. Define

Q′ = [m1 − �ε1, M1] × · · · × [mk − �εk, Mk]
and

D(A, ε) := {y ∈ Q′ | ∃a ∈ A : F(a) − �ε ≤p y}.
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A point p is only inserted into the given archive A if there exists no a ∈ A which �ε-domi-
nates p. Assume A and p are given, and that p is inserted into A. Denote by A′ the resulting
archive. By Lemma 1 it follows that

D(A, ε) ⊂ D(A′, ε)

whether or not p dominates points a ∈ A. Define

Bp := {y ∈ R
k | y ≤p F(p) and F(p) − �ε ≤p y}

It is
◦

Bp ∩ D(A, ε) = ∅, where
◦

Bp denotes the interior of Bp (assume there exists an

y ∈ ◦
Bp ∩ D(A, ε), i.e., there exists an a ∈ A with F(a) − �ε ≤p y <p F(p), and thus

a ≺�ε p, a contradiction). Since Bp = B(F(p) − �ε
2 , �ε

2 ), i.e., Bp is a k-dimensional box
with center c = F(p) − �ε

2 and radius r = �ε
2 , we have

V ol(D(A′, ε)) ≥ V ol(D(A, ε)) + V ol(Bp)
︸ ︷︷ ︸

=∏k
i=1 �εi >0

, (3)

where V ol(D) denotes the k-dimensional volume of a set D ⊂ R
k . Since 0 ≤ V ol(D(A, ε))

≤ V ol(Q′) ≤ ∞, it follows only finitely many insertions can be done.
Using this observation we can now show the existence of a number l0 such that the Al0 is

an ε-approximate Pareto set. For this, we assume that there exists no such number l0. That
is, for every l ∈ N there exists a point x = x(l) ∈ Q which is not ε-dominated by any of the
elements of the archive Al .

Let l ∈ N. Since there exists no a ∈ Al which ε-dominates x(l) and since �ε <p ε there
exists also no a ∈ A which �ε-dominates x(l). Moreover, since � < 1 and F is continuous
there exists a neighborhood Ul of x(l) such that

� ∃a ∈ Al : a ≺�ε u ∀u ∈ Ul (4)

By (2) it follows that there exists with probability one a number il ∈ N and a point
xil ∈ Pil ∩ Q. By (4) and the construction of ArchiveU pdateEps1 (lines 3 resp. 11 of
Algorithm 2) it follows that either this point has to be inserted, or that another point x̃l has
been inserted in one of the iteration steps l + 1, . . . , il . In any case, at least one insertion
must have occurred from iteration step l + 1 to il .

Proceeding in this manner, a sequence of infinitely many insertions can be constructed,
which contradicts the observation made above. Thus, there must exist with probability one
an l0 such that Al0 forms an ε-approximate Pareto set as claimed. Further, all subsequent
archives are ε-approximate Pareto sets due to Lemma 1, and the proof is complete. ��

Before we proceed with the next archiving strategy we make some remarks on the assump-
tions made above as well as on the approximation quality of the limit archive.

Remarks 3.3

(a) The value of � < 1 is needed to guarantee the convergence in the probabilistic sense.
Consider for instance F = (x2, x2), ε = (1, 1), and � = 1. Further, let the archive be
given by A = {1}. This archive does not form an ε-approximate Pareto set, and the prob-
ability to improve this set is zero since x∗ = 0 is the only point which is not ε-dominated
by 1. The following consideration shows directly (unlike the proof above, which is done
by contradiction) that this cannot happen when choosing � < 1:
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Let x ∈ Q. By (2) it follows that there exists with probability one for every i ∈ N an li ∈ N

and a point xi such that xi ∈ Pli ∩B1/ i (x)∩Q. By construction of ArchiveU pdateEps1
there exists for every xi an element ai ∈ Ali such that ai ≺�ε xi (and by Lemma 1 there
exist further for all l ≥ li an entry al

i ∈ Al such that al
i ≺�ε xi ). Since limi→∞ xi = x

and since F is continuous there exists an l ∈ N such that

| fi (xl) − fi (x)| ≤ 1 − �

2
εi , i = 1, . . . , k. (5)

Since al ≺�ε xl and by (5) we have

fi (al) − �εi ≤ fi (xl) ≤ fi (x) − 1−�
2 εi ∀i = 1, . . . , k, and

f j (al) − �εi < f j (xl) ≤ f j (x) − 1−�
2 ε j for a j ∈ {1, . . . , k}, (6)

and hence al is 3�−1
2 ε-dominating x , and since 3�−1

2 < 1 we have also al ≺ε x . That is,
for x ∈ Q there exists with probability one an entry in the archive which ε-dominates the
given point x as desired. Despite these theoretical considerations, � = 1 can be chosen
in practise.

(b) Assumption (2) is the crucial part to obtain the convergence. For general ε and general
F it is certainly not possible to postulate less. Given a fixed ε ∈ R

k+ it would in principle
be sufficient to require condition (2) only for the δ which is given in the proof above as
well as for finitely many points x ∈ Q. However, this is nearly impossible to check in
practice.

(c) Here we have used the absolute ε-dominance. If 0 �∈ fi (PQ), i = 1, . . . , k, alternatively
the relative ε-dominance as in [8] can be used yielding similar results.

(d) We have restricted the domain to a compact subset of the R
n . The following (academic)

example shows that we can run into trouble if Q is not compact: consider the MOP

F: R+ → R
2

F(x) =
(

−x,− 1

x

)

In this case, the Pareto set is given by P = R+. Since F(P) is not bounded below it
can not be represented by a finite archive using ε-dominance. However, this changes
if Q = [a, b], a < b, a, b > 0 is chosen as the domain. In this case, we have
P = Q = [a, b] and both objectives are Lipschitz continuous on Q with Lipschitz
constants

L1 = max
x∈[a,b] | f ′

1(x)| = 1 and L2 = max
x∈[a,b] | f ′

2(x)| = 1

a2 .

By the Lipschitz continuity it follows that | fi (x)− fi (y)| ≤ εi if |x−y| ≤ εi/Li , i = 1, 2.
Thus, the set of equally distributed points

x j = a + j

N
(b − a), j = 0, . . . , N ,

where N = ⌈ b−a
min(ε1/L1,ε2/L2)

⌉

, forms an ε-approximate Pareto set (even an ε-Pareto set
since since all x j ∈ P).

Remarks 3.4

(a) The ‘exclusion strategy’ in lines 3 and 4 of Algorithm 2 makes it possible that the
sequence of archives reaches a steady state solution which forms an ε-approximate Pareto

123



566 J Glob Optim (2008) 41:559–577

Fig. 1 Possible example of a set which was generated by ArchiveU pdateEps1 with dist (F(A),

F(PQ)) � ε

set after finitely many steps. On the other hand, exactly this feature prevents that we
can guarantee convergence of the entries of an archive toward an ε-Pareto set. Fur-
ther, it can happen that dist (F(A), F(PQ)) gets ‘large’ (that is, images F(a), a ∈ A,
could be ‘far away’ from the Pareto front), as the following example shows (cf. Fig. 1):
assume that the elements a1, a2, a3 are inserted into the archive in this order (and w.l.o.g.
assume that � = 1). By construction of ArchiveU pdateEps1, these points will not
be removed in the subsequent steps since there exists no point p ∈ Q which domi-
nates ai , i ∈ {1, 2, 3}, but is not ε-dominated by any of them. In such a manner an
example can be constructed with dist (F(A), F(PQ)) = maxi=1,..,k(Mi − mi ) with
mi = minx∈Q fi (x) and Mi = maxx∈Q fi (x). However, this bad theoretical value has
never been observed in our computations.

(b) Note that the number of entries in an archive is (amongst others) dependent on the inser-
tion order of the candidate solutions as the previous example shows (compare to Fig. 1):
if a1, a2, a3 are inserted in this order, all elements are added to the archive, but if a3 is
added first to the archive, neither a1 nor a2 will be added to the archive since both points
are ε-dominated by a3.

Next, we assume that the entries of ε are relatively large. This can be the case when the
decision maker prefers to obtain few, widespread solutions of the MOP, or in order to be able
to approximate the entire Pareto set with a limited archive, in particular when considering
more than two objectives. Hence, convergence of the entries of the sequence of archives
toward the Pareto set is desired. For this, we propose to use the archiving strategy that is
described in Algorithm 3. In the following, we discuss the limit behavior of this approach.

Lemma 3.5 Let A0, P ⊂ R
n be finite sets, ε ∈ R

k+, and
A := ArchiveU pdateEps2 (P, A0). Then the following holds:

∀x ∈ P ∪ A0: ∃a ∈ A : a ≺�ε x .

Proof Analogue to the proof of Lemma 3.1. ��
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Algorithm 3 A := ArchiveU pdateEps2 (P, A0)

1: A := A0
2: for all p ∈ P do
3: if � ∃a ∈ A : a ≺�ε p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A ∪ {p}\{a}
9: end if
10: end for
11: end for

Theorem 3.6 Let (MOP) be given and Q ⊂ R
n be compact, and let there be no weak Pareto

points in Q\PQ. Further, let F be injective and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1 (7)

Then an application of Algorithm 1, where ArchiveU pdateEps2 is used to update the
archive, leads to a sequence of archives Al , l ∈ N, where the following holds:

(a) There exists with probability one an l0 ∈ N such that Al is an ε-approximate Pareto set
for all l ≥ l0.

(b)

lim
l→∞ dist (Al , PQ) = 0, with probability one.

Proof (a) Analogue to the proof of Theorem 3.2 (a).
(b) A new element p is added to the archive A by ArchiveU pdateEps2 only in one of the

following two cases: (1) if there exists no a ∈ A which �ε-dominates p (denote by type
1 insertion for the remainder of this proof), and (2), if p dominates an element a ∈ A,
which will in turn be discarded from the archive (denote by type 2 insertion). Since A is
finite and PQ is compact it follows that

dist (A, PQ) = max
a∈A

min
p∈PQ

||a − p||.

We prove the claim in the following way: we show that for every a ∈ A there exists a
sequence ai of dominating points with ai → a∗ ∈ PQ which will be inserted in future
instances of the archive. Since dist (a∗, PQ) = 0 and since all the points ai , i ∈ N, do
not have to be considered for the limit archive due to the insertion of type 2 it remains to
show that there are only finitely many insertions of type 1 (which is the only manipulation
of the archive by which the value of dist (A, PQ) can be increased). This will be done
in the second part.
Let l0 ∈ N and a0 ∈ Al0 . If a0 ∈ PQ it follows that a0 ∈ Al+m, ∀m ∈ N. In this case set
ai := a0. Now assume that a0 �∈ PQ . Define

M: Q → R

M(x) := max
p∈PQ

min
i=1,...,k

( fi (x) − fi (p)) (8)

Under the assumptions made above it holds that

M(x) ≥ 0 ∀x ∈ Q and M(x) = 0 ⇔ x ∈ PQ .
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Let p0 ∈ PQ be the argument of the maximum of M(a0). Since a0 �∈ PQ and a0 is
not a weak Pareto point it follows that M(a0) > 0 and F(p0) <p F(a0). Since F is
continuous there exists a neighborhood Up0 of p0 such that

F(y) <p F(p0) + M(a0)

2
· (1, . . . , 1) ∀y ∈ Up0 ,

and thus, that F(y) <p F(a0), ∀y ∈ Up0 . By (7) it follows that Generate (see Algo-
rithm 1) generates with probability one after finitely many steps a point b ∈ Up0 ∩ Q.
Now there are two cases: (1) b is added to the archive (in this case set a1 := b), and
(2), a0 has already been replaced by an element ã ∈ R

n such that b and ã are mutually
nondominating (in this case set a1 := ã). In both cases there exists a j ∈ {1, . . . , k} such
that

f j (a1) < f j (p0) + M(a0)

2
.

Proceeding in an analogous way we obtain a sequence {ai }i∈N of dominating points. Since
the sequence {F(ai )}i∈N is bounded below and F is injective it follows that ai → a∗ ∈ Q
for i → ∞.
Next we show that a∗ ∈ PQ . For this, assume that a∗ �∈ PQ . Define p∗ as the argument
of the maximum of M(a∗). Since a∗ �∈ PQ and a∗ is not a weak Pareto point it follows
that F(p∗) <p F(a∗) and M(a∗) > 0. Proceeding further as above we obtain a point
a∗∗ and an element j ∈ {1, . . . , k} such that

f j (a
∗∗) < f j (p∗) + M(a∗)

2
≤ f j (p∗) + f j (a∗) − f j (p∗)

2

= f j (p∗) + f j (a∗)
2

< f j (a
∗)

This is a contradiction to the assumption of the convergence of the sequence, and thus it
must be that a∗ ∈ PQ .
Further, it can be shown analogously to ArchiveU pdateEps1 (see proof of Theorem
3.2) that only finitely many insertions of type 1 can be done during the run of the algo-
rithm. Thus, only finitely many times the value of dist (A, PQ) can be increased (an
insertion of type 2 decreases the value), and the claim for the limit archive follows. ��

4 Bounds on the archive sizes

In the following, we give bounds on the magnitude of the limit archives with respect to ε ∈ R
k+

and the chosen archiving strategy. We assume that |P0| = 1, and thus also |A0| = 1. The
lower bound of the limit archive for both archiving strategies is obviously given by 1. For this,
consider e.g., f1 = f2 = · · · = fk to be a convex function which takes its (unique) minimum
inside Q. The upper bounds for the different archiving strategies are derived separately.

Theorem 4.1 Let mi = minx∈Q fi (x) and Mi = maxx∈Q fi (x), 1 ≤ i ≤ k, and |A0| = 1.
Then, when using ArchiveU pdateEps1, the archive size maintained in Algorithm 1 for all
l ∈ N is bounded as

|Al | ≤
K

∑

i1,...,ik−1=1
i1>...>kk−1

k−1
∏

j=1

⌈

Mi j − mi j

�εi j

⌉

, (9)
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Fig. 2 The entries ai of each archive lie on a (virtual) curve c. Since interiors of the boxes Bi (with upper
right corners F(ai )) are mutually non-intersecting, the minimal component-wise distance between two entries
is determined by �ε

Proof Consider a sequence p1, p2, . . . of points which are all accepted by
ArchiveU pdateEps1 in this order (i.e., starting with A0 = {p1}). Consider the i-th step and
let Ai = {a1, . . . , al} with l ≤ i . Define B j := B(F(a j )− �ε

2 , �ε
2 ), j = 1, . . . , l (compare

to proof of Theorem 3.2). Using inductive arguments we see that (a) all elements in Ai are
mutually nondominating, and that (b) the interiors of all the boxes B j , j = 1, . . . , l, are
mutually non-intersecting. Since the points a j are the upper right corners of the boxes B j and
since the interiors of these boxes are mutually non-intersecting the minimal distance between
two points a j1 and a j2 , j1 �= j2, is determined by �ε (see Fig. 2). Thus we are able to bound
the number of entries in the archives if we can bound the number of such boxes which can
be placed in the image space such that their lower left corners are mutually nondominating
and the boxes are mutually non-intersecting.

Let us first consider a bi-objective model (i.e., k = 2), since in this case the proof is
geometrically descriptive and already captures the basic idea. Since all points a j are mutu-
ally nondominating, the images of these points are all located on a (virtual) continuously
differentiable curve

c: [m1, M1] → R
2

u �→ (u, f (u)) (10)

where f : [m1, M1] → [m2, M2] is a strictly monotonically decreasing (but not necessarily
surjective) function. The length of this curve can be bounded as follows:

L(c) =
∫ M1

m1

‖c′(u)‖du =
∫ M1

m1

√

|1|2 + | f ′(u)|2du

≤
∫ M1

m1

1du +
∫ M1

m1

| f ′(u)|du =
∫ M1

m1

1du −
∫ M1

m1

f ′(u)du

≤ (M1 − m1) + (M2 − m2) (11)
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Thus, for k = 2 we see that |Ai | ≤
⌈

(M1−m1)
�ε1

⌉

+
⌈

(M2−m2)
�ε2

⌉

, i ∈ N, as claimed above.

Now we turn our attention to the general case, i.e., let k ≥ 2 be given. Define

K := [m1, M1] × · · · × [mk−1, Mk−1],
K(i) := [m1, M1] × · · · × [mi−1, Mi−1] × [mi+1, Mi+1] × · · · × [mk−1, Mk−1],
u(i) := (u1, . . . , ui−1, ui+1, . . . , uk−1), i = 1, . . . , k − 1. (12)

In analogy to the bi-objective case, the images of the elements of the archives are located in
the graph of a map � which is characterized as follows:

�: K → R
k

�(ui , . . . , uk−1) = (u1, . . . , uk−1, f (u1, . . . , uk−1)), (13)

where f : K → [mk, Mk] is a sufficiently smooth function satisfying the monotonicity con-
ditions ∂ f

∂ui
u < 0, ∀u ∈ K and ∀i = 1, . . . , k − 1. Then, the (k − 1)-dimensional volume of

� with parameter range K can be bounded as follows:

V ol(�) =
∫

K

√

||∇ f ||2 + 1du =
∫

K

√
(

∂ f

∂u1

)2

+ . . . +
(

∂ f

∂uk−1

)2

+ 1du

≤
∫

K

∣
∣
∣
∣

∂ f

∂u1

∣
∣
∣
∣
du + . . . +

∫

K

∣
∣
∣
∣

∂ f

∂uk−1

∣
∣
∣
∣
du +

∫

K
1du

=
k−1
∑

i=1

(
∫

K(i)

(∫ Mi

mi

∣
∣
∣
∣

∂ f

∂ui

∣
∣
∣
∣
dui

)

du(i)

)

+
∫

K
1du

=
k−1
∑

i=1

(
∫

K(i)

(

−
∫ Mi

mi

∂ f

∂ui
dui

)

du(i)

)

+
∫

K
1du

≤
k

∑

i1,...,ik−1=1
i1>...>kk−1

k−1
∏

j=1

(Mi j − mi j ) (14)

This bound of the volume leads directly to the bound of the cardinality of the archives as
stated above, which completes the proof. ��

Figure 1 indicates how to construct an example for the bi-objective case where the size
of the archive reaches this maximal bound. However, this bound is typically much too pessi-
mistic in practice since (a) the shape of the Pareto front can be arbitrary (e.g., disconnected),
and thus its (k − 1)-dimensional volume much smaller than estimated above, (b) in case the
Pareto front contains ‘flat’ regions these are typically covered by few solutions (see example
in Sect. 5.1), and (c) the number of entries in the archive depends on the ordering of the
candidates (see Remark 3.4(c)).

However, the next example motivates that the usage of this archiving strategy and its broad
bound can be of advantage, e.g., for discrete problems, where the Pareto set is a finite—but
possibly huge—set.

Example 4.2 As an example consider bi-criteria {0, 1}-knapsack problems of the following
form (e.g., [2]):
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f1, f2: {0, 1}n → R

fi (x) =
n

∑

j=1

ci
j x j , i = 1, 2 (15)

such that
n

∑

j=1

w j x j ≤ W,

where ci
j ∈ [0, 1] represents the (normalized) value of item j on criterion i, i = 1, 2.w j is the

weight of item j , and W the overall knapsack capacity. The cardinalities of the Pareto sets of
such capacity constrained models are typically relatively large. For instance, for the following
special case the number of nondominated solutions can be stated explicitly: for c1

j + c2
j = 1

and w j = k, j = 1, . . . , n (i.e., constant sum of the criteria coefficients and equal weighted

items) and l := � W
k � ≤ n the cardinality of the Pareto set is given by |P| =

(

n
l

)

= n!
(n−l)!l! .

Hence, e.g., for n = 20 items and l = 10 the Pareto set consists of |P(20,10)| = 184, 756
efficient solutions, and for n = 50, l = 20 we have |P(50,20)| = 1.26 × 1013.

As an example for the maximal magnitude of the archive when using ArchiveUpdateEps1
we assume for simplicity that ε has equal entries, ε = (ε̄, . . . , ε̄). Since for all efficient
solutions it holds that |x | := xT x = l ([2]) and since ci

j ∈ [0, 1] we can assume that
fi (a) ∈ [0, l], ∀a ∈ A, and thus mi = 0 and Mi = l. Hence we obtain (for � = 1)

|A| ≤
(

l

ε̄
+ l

ε̄

)

= 2
l

ε̄

Choosing ε̄ = 0.1 – which corresponds to 10% of the value of one item – we obtain the upper
bounds |A(20,10)| ≤ 200 for (n, l) = (20, 10) and |A(50,20)| ≤ 500 for (n, l) = (50, 20).
Although pessimistic, these estimates are considerably lower than the magnitudes of the
entire Pareto sets themselves.

Theorem 4.3 Let mi = minx∈Q fi (x) and Mi = maxx∈Q fi (x), 1 ≤ i ≤ k, and |A0| = 1.
Then, when using ArchiveU pdateEps2, the archive size maintained in Algorithm 1 is
bounded for all l ∈ N as

|Al | ≤
k

∏

i=1

⌈
Mi − mi

�εi

⌉

. (16)

Proof We can consider the process of including solutions into the archive over time as a
process for constructing a directed graph G. Starting with an empty graph, we add a new
node for each new solution p that is added to the archive A in line 4 or line 8 of the algorithm.
If p is added in line 8 (meaning the condition in line 7 is true), we add arcs (p, a) from p to
each solution a that is discarded in line 8 due to p ≺ a. Let Vt := ⋃

1≤ j≤t A j be the union of
all archives up to iteration t and V ′

t ⊆ Vt the subset of those archive members that have been
added in line 4. Thus, the node set of Gt after iteration t is Vt , and Gt itself is a forest whose
roots are the current archive members At and whose leafs are the elements of V ′

t . Obviously,
the number of roots must be smaller than the number of leafs, so |At | ≤ |V ′

t |.
To bound |V ′

t |, the number of elements that ever entered the archive in line 4, we again
consider the boxes Bv := B(F(v) − �ε

2 , �ε
2 ) for all v ∈ V ′

t . Due to line 3, a solution p
generated in iteration t ′ ≤ t cannot be accepted in line 4 if F(p) lies inside the box Bv of
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any previously accepted element of v ∈ V ′
t , otherwise a ≺�ε p for some current archive

member a ∈ At as there exists a ∈ At with F(a) ≤ F(v) and v ≺�ε p. If p was accepted
in line 4, then F(p) cannot lie inside the box Bv of any subsequently accepted element of
v ∈ V ′

t neither, as this would entail p ≺ v. Hence, the interiors of the boxes Bv must be
mutually non-intersecting. The maximum number of non-intersecting boxes with side length
�ε and centers c with mi ≤ ci ≤ Mi is

∏k
i=1 �(Mi − mi )/(�εi )�, thus the claimed bound

on the archive size follows. ��
In the following example we construct a sequence of objective vectors to show that the

bound of ArchiveU pdateEps2 is tight for n = 2.

Example 4.4 Let an MOP be given with n = 2 and F(Q) = [0, M1] × [0, M2], where
Mi = ri · ti , ti = �εi , and ri ∈ N a given integer, for i = 1, 2. We are going to construct
an archive consisting of r2 groups of r1 elements each, where the elements can become
arbitrarily close within a group, and the groups are separated by a distance of t2.

For each group i, 1 ≤ i ≤ r2 repeat the following: first, generate the r1 vectors

v1
i, j=((i−1)r1δ1+( j−1)(t1+δ1), M2−(i − 1)(r2δ2+t2)−( j − 1)δ2), j=1, . . ., r1,

where δ1 ≤ t1/(r1r2)) and δ2 ≤ t2/(r2
2 + r1), which ensures that all these vectors are inside

F(Q). Now generate the r1 − 1 further vectors

v2
i, j = ((i − 1)r1δ1 + ( j − 1)δ1, M2 − (i − 1)(r2δ2 + t2) − ( j − 1)δ2), j = 2, . . . , r1,

each of which replacing its dominated counterparts with identical second coordinate in the
archive.

After all r2 groups have been constructed in this way, the final archive consists of r1 · r2

elements, which is exactly the value of the upper bound given for ArchiveU pdateEps2
since ri = Mi −mi

�εi
, i = 1, 2, by construction of this example.

5 Numerical results

In this section we make a comparative study on two test problems in order to illustrate the
effect of the different archiving strategies. In both examples the overall computational time
is significantly lower when using the novel archiving strategies compared to the ‘standard’
one, which stores all nondominated solutions obtained during the search process.
The computations have been done on an Intel Xeon 3.2 GHz processor.

5.1 Example 1

First we consider the following bi-objective example (K. Witting and A. Hessel Von Molo,
Private Communication, 2004):

f1, f2: R
2 → R

2

f1(x, y, λ) = 1
2 (

√

1 + (x + y)2 + √

1 + (x − y)2 + x − y) + λ · e−(x−y)2
(17)

f2(x, y, λ) = 1
2 (

√

1 + (x + y)2 + √

1 + (x − y)2 − x + y) + λ · e−(x−y)2

To obtain a fair comparison of the different archivers we have decided to take a random
search operator for the generation process. Moreover, we have taken the same sequence of
points for all settings. For the subsequent comparisons we have used the following archiving
strategies:
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(ND) ArchiveUpdateND, i.e., all nondominated points are kept,
(Eps1) ArchiveUpdateEps1, and
(Eps2) ArchiveUpdateEps2,

Figure 3 shows one example for resulting limit sets. Hereby we have taken N = 500,000
randomly chosen points in Q = [−0.5, 0.5]2, and have chosen λ = 0, ε = (0.15, 0.15),
and � = 1. The set obtained by ArchiveU pdateN D is already very close to the real Pa-
reto front. However, in that case the time which had to be spent to update the archive1 is
tremendous compared to both other strategies, see Table 1 for the average running times.

It has to be noted that the value of N is relatively high, and that such a value is higher
than needed to obtain a ‘reasonable’ approximation for this low-dimensional problem. How-
ever, very often stochastic search procedures are run ‘over night’, and in this case typically
a huge number of maximal function calls is adjusted. And in these cases—and when the
execution time for a function call is not too large—the storage of the ‘good’ solutions can be
the bottleneck of the search procedure.

Next we consider the same MOP but use the value λ = 0.85. In this case the Pareto front
contains a dent when choosing the domain as Q = [−1.5, 1.5]2. Figure 4 displays a result
similar as for the previous one for N = 200,000 randomly chosen points, and Table 2 shows
the corresponding averaged running times. Note that the approximation obtained by using
ArchiveU pdateEps1 reveals some gaps, which might be unwanted in certain applications
(e.g., [9]). These gaps can occur in regions where the Pareto front is ‘flat’, which is due
to the nature of ε-dominance. For possible ways of overcoming this problem, we refer to
subsequent work [15].

5.2 Example 2

Next we consider the following three-objective MOP ([14]):

f1, f2, f3: R
10 → R

fi (x) =
10∑

j=1
j �=i

(x j − ai
j )

2 + (xi − ai
i )

4, (18)

where

a1 = (1, 1, 1, 1, . . .) ∈ R
10

a2 = (−1,−1,−1,−1, . . .) ∈ R
10

a3 = (1,−1, 1,−1, . . .) ∈ R
10

For the comparative study we have taken N = 5,000,000 randomly chosen points within
the domain Q = [−1, 1]10. Figure 5 shows one numerical result using the three archiving
strategies, where we have chosen ε = (1/3, 1/3, 1/3) and � = 1. Apparently, the approxi-
mation qualities of the three sets are similar, that is, no set seems to be significantly ‘better’
than any of the others. To measure the real approximation quality the epsilon indicator [16]
is used, where Iε(A, B) gives the smallest value of ε̄ ∈ R such that A is an ε-approximate
Pareto set of B where ε = (ε̄, . . . , ε̄), i.e.,

Iε(A, B) := min{ε̄ ∈ R | ∀b ∈ B ∃a ∈ A : a ≺ε b}.
For the data obtained in this test the values can be seen in Table 3. This shows that the dif-
ferences in the different approximation qualities are only very marginal. Such a similarity

1 The elements of all archives were stored using a linear list.
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Fig. 3 Three limit achives
obtained by different archiving
strategies for MOP (17) for λ = 0
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Table 1 Comparison of the magnitudes of the final archive (|AN |, rounded) and the corresponding update
times (T , in seconds) for different archiving strategies for MOP (17) and for λ = 0

ND Eps1 Eps2

|AN | 11,874 15 14

T 3730 0.56 2.6

We have taken the average result of 100 test runs
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Fig. 4 Numerical result on MOP (17) for λ = 0.85 and ε = (0.3, 0.3). The set obtained by
ArchiveU pdateEps1 reveals gaps in the approximation

Table 2 Comparison of the magnitudes of the final archive (|AN |, rounded) and the corresponding update
times (T , in seconds) for different archiving strategies for MOP (17) and for λ = 0.85

ND Eps1 Eps2

|AN | 1481 15 14

T 134.03 0.28 1.37

We have taken the average result of 100 test runs

does not hold, however, for the different running times (see Table 4). In fact, these times
offer a huge variety. First, it is obvious that the archiver ArchiveU pdateEps1 is much
faster in this case than ArchiveU pdateEps2. This is most probably due to the fact that
ArchiveU pdateEps1 rejects more solutions, and that this rejection process is done faster
than in the second approach—with the sacrifice of dropping the ability to converge toward an
ε-Pareto set. However, these two archivers are both much faster than ArchiveU pdateN D.
Compared to ArchiveU pdadateEps2 the difference is of one order of magnitude, and
compared to ArchiveU pdadateEps1 the difference is even of two orders of magnitude.

Thus, regarding both the similarity of the approximation quality and the significant differ-
ence in the running times we can draw the conclusion that the archiving strategies considered
in this work, ArchiveU pdateEpsi, i = 1, 2, are advantageous compared to the ‘standard’
one for this application—and probably for others as well.

6 Conclusion and future work

We have proposed generic stochastic search algorithms for obtaining ε-approximate Pareto
sets as well as ε-Pareto sets of a continuous multi-objective optimization problem in the
limit. We have presented a convergence result for these algorithms, have given bounds on the
cardinality of the corresponding archives, and have finally presented some numerical results.

For future work, there are a lot of interesting topics which can be addressed to advance
the present work. One could, for instance, consider the speed of convergence, in particular
when the methods presented above are hybridized with local search strategies. Further, we
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Fig. 5 Numerical result on MOP
(18) using different archiving
strategies

0

5

10

10 15 20 25 30 35 40 45 50

4

6

8

10

12

14

16

f2

f1

f 3

(a) ArchiveUpdateEps1

0

5

10

10 15 20 25 30 35 40 45 50

4

6

8

10

12

14

16

f2

f1

f 3

(b) ArchiveUpdateND

0

5

10

10 15 20 25 30 35 40 45 50

4

6

8

10

12

14

16

f2

f1

f 3

(c) ArchiveUpdateEps2

Table 3 Values of the epsilon indicator Iε(A, B) on the sets shown in Fig. 5: N D denotes the set obtained
by ArchiveU pdateN D and Epsi the sets obtained by ArchiveU pdateEpsi, i = 1, 2

A = N D A = N D A = Eps1

B = Eps1 B = Eps2 B = Eps2

Iε(A, B) 0 0 0.1545

Iε(B, A) 0.1599 0.1588 0.1586
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Table 4 Comparison of the magnitudes of the final archive (|AN |, rounded) and the corresponding update
times (T , in seconds) for different archiving strategies for MOP (18)

ND Eps1 Eps2

|AN | 2533 419 417

T 7326 10 660

We have taken the average result of 100 test runs.

intend to apply this theoretical framework in search for the development of fast and reliable
multi-objective optimization algorithms.
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